Nitrogen Uptake and Leaching on Greens

نویسنده

  • William J. Johnston
چکیده

Superintendents know that management of putting greens is an art. Greens are often made of high-porosity sand that does not retain water or nutrients very effectively. Also, putting green grasses are cut extremely short, which does not allow a deep root system to develop and take up nutrients from deep in the soil profile. Therefore, putting greens require frequent irrigation and fertilizer applications to maintain high turfgrass quality. Superintendents need to be aware that such management increases the potential of fertilizer leaching into ground water. Nitrogen (N) leaching can occur on putting greens, but the intensity is highly variable (Brown, 1982; Mancino and Troll, 1990; Shuman 2001). In order to prevent the escape of N fertilizer applications into the environment, it is important to understand how N cycles in the turfgrass environment (Figure 1). Continued on page 52

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yield and nitrogen leaching in maize field under different nitrogen rates and partial root drying irrigation

Irrigation water is limiting for crop production in arid and semi-arid areas. Furthermore, excess nitrogen (N) application is a source of groundwater contamination. Partial root drying irrigation (PRD) can be used as water saving technique and a controlling measure of groundwater N contamination. The objectives of this investigation were to evaluate the effect of ordinary furrow irrigation (OFI...

متن کامل

ارزیابی مدل DSSAT v4.5 به منظور شبیه‌سازی آبشویی نیترات در مزرعه ذرت در سطوح مختلف آب و کود نیتروژنی

Nitrate leaching from agricultural lands can pollute groundwater, and the degree of pollution caused significantly depends on agricultural practices implemented on farms. Field studies required to evaluate the effects of various agricultural management strategies on nitrate leaching are expensive and time consuming. As a result, it is suggested to use crop models to simulate the effects of mana...

متن کامل

Modification of a maize simulation model under different water, nitrogen and salinity levels

Irrigation, salinity and nitrogen (N) are the three major limiting environmental factors inmaize yield potentials especially in arid and semi-arid regions. An integrated water and N MaizeSimulation Model (MSM) was modified for salinity conditions using 2009-2010 fieldexperiments data in southwest of Iran. Irrigation levels were: I1=1.0ETc+0.25ETc as normalleaching amount, I2=0.75I1 and I3=0.5I1...

متن کامل

Little Potential of Spring Wheat Genotypes as a Strategy to Reduce Nitrogen Leaching in Central Europe

Nitrogen (N) losses negatively impact groundwater quality. Spring wheat genotypes varying in N-fertilizer recovery were studied (by using lysimeters) for their potential to minimize NO3-N leaching during spring and summer, over a three-year period. Additionally, we examined to what extent root growth and NO3-N leaching explain the well-known difference found between apparent and isotopic N reco...

متن کامل

Maize response to water, salinity and nitrogen levels: yield-water relation, water-use efficiency and water uptake reduction function

Water, salinity and nitrogen are the major factors affecting maize production in arid and semi-arid areas. The objectives of this study were to investigate the effects of different water, salinity and nitrogen levels on yield-water relationships, water use, water productivity (WP), water use efficiency (WUE) and water uptake reduction function by maize hybrid SC-704 in a semi-arid area and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012